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ABSTRACT

MOTIVATION

A principal goal of the Air Force research program is to develop accurate, reliable and
efficient computational models so that laboratory and flight tests may be decreased and/or
the results of such tests may be more effective in reducing design and production costs of
new Air Force systems. Key challenges in achieving this goal are the uncertainties that
exist in computational models. These uncertainties may be a result of the limitations of
the mathematical model in representing physical reality, the numerical uncertainties that
arise in obtaining (computational) solutions to these models, and/or the uncertainties in
the parameters that enter into such models.

Examples of each of these uncertainties include the following.

PHYSICAL UNCERTAINTIES:

At the Reynolds numbers of interest for aerospace vehicles, there is usually an empirical
turbulence model introduced in order to obtain solutions to the Navier-Stokes equations
and this leads to uncertainties in the results. Also in structural models, approximations are
made based upon the anticipated magnitude of the structural deformation that lead
progressively from small deflection (linear) models to small strain (but still elastic
nonlinear) models to large strain (plastic) models. This also leads to uncertainty in the
results.

NUMERICAL UNCERTAINTIES:

Whether one uses modal methods or finite element (or volume) methods to solve the
partial differential equations for the fluid or structure, the number of modes or elements



required to give a given level of accuracy requires a convergence study. Unless such a
study is done there remains some numerical uncertainty in the answer and a priori there is
no way of determining the accuracy of the answer in the absence of a convergence study.

PARAMETER UNCERTAINTIES:

Because of manufacturing and fabrication tolerances there is always some uncertainty in
the parameters of a model, e.g. there may be uncertainties in the wing shape that will
impact the aerodynamic flow and there may be uncertainties in the dimensions of the
structure that may impact its stiffness, mass and/or damping characteristics.

RESEARCH PLAN:

Representative examples of all of these uncertainties have been addressed in the present
work. For example, we have systematically improved the structural model and
determined its impact on the prediction of limit cycle oscillations of wings which have
been experimentally investigated in previous work by the present authors and others.

We have also studied the numerical convergence of solutions using both modal and finite
element methods.

And finally we have studied the impact of uncertainties of parameters such as thickness
and modulus of elasticity.

Because all such calculations are computationally intensive, special attention has been
given to developing new effective solution techniques that provide the required numerical
accuracy in the solution and allow a range of parameter uncertainty to be investigated
using the highest (as well as lower) fidelity computational models.

REPRESENTATIVE RESULTS:

A fuller account of our results is given in the publications in the list of references cited at
the end of this abstract. Here a few representative highlights are provided to summarize
some of the key findings of our work.

AN EXAMPLE OF A PHYSICAL UNCERTAINTY

A comparison between theory and experiment is shown for a cropped delta wing
undergoing limit cycle oscillations (LCO). Figure 1 shows the wing geometry and Figure
2 is a plot of wing deformation versus flow dynamic pressure. The experiment was
performed at NASA Ames Research Center and earlier theoretical/computational studies
were done by Ray Gordnier and his colleagues at AFRL. In the first such studies a
nonlinear fluid model (Euler or Navier-Stokes equations) was used in conjunction with a
small deflection, linear structural model. The result was that the theoretical model gave
LCO response levels more than an order of magnitude larger than experiment. Clearly
there was something missing in the theoretical model (a physical uncertainty).



At the suggestion of the PI, a nonlinear structural model was investigated (the Von
Karman plate theory). This led to substantial improvement in the correlation between
theory and experiment and it was definitely established that for this experimental model
the structural nonlinearity was dominant relative to the fluid nonlinearity. However some
differences between computational and test results remained. The Von Karman plate
theory is a small rotation theory and so the next step has been to used a finite element
model that allows for larger rotations. The ANSYS finite element code has been used for
this purpose. The results from experiment, the Von Karman theoretical models and
ANSYS are all shown in Figure 1. The result is a further improvement in the agreement
between theory and experiment, though some differences remain. Thus further study is

indicated, although it is well to remember that there are uncertainties in experiments as
well as computational models. One of the advantages of a computational model is that it
may be refined and redone. While that is also possible in principle for an experiment, in
practice it is usually far more difficult to repeat an experiment such as a wind tunnel test
or a flight test. See Reference 3 for more details.

AN EXAMPLE OF A NUMERICAL UNCERTAINTY

In related work on another delta wing model that was tested in the Duke University Wind

Tunnel, the Von Karman plate model was used but the solution was obtained with a

modal analysis rather than a finite element analysis. See Figure 3 for the wing geometry.
The finding was that a surprisingly large number of modes were needed to obtained
sufficient numerical accuracy. In Figure 4 representative results are shown from
experiment, from the ANSYS finite element computational code, and from a modal
solution of the Von Karman plate model. This is a plot of wing deformation versus flow
velocity. While there is good agreement for the flow velocity at which LCO begins, there
are substantial differences with respect to LCO response (wing deformation) per se. The
differences between the two computational models in this case reflect both the physical
differences in the underlying theoretical models and also numerical differences due to the
different solution methods. See Reference 4 for more details.

AN EXAMPLE OF PARAMETER UNCERTAINTY

When a parameter uncertainty exists it is the usual practice to assume the uncertainty can

be characterized as a random distribution of the parameter about a mean or nominal
value. The challenge then is to find the corresponding random distribution of the system

response. While in principle this can be done by repeatedly simulating the response for
each random choice of the parameter (a Monte Carlo simulation), in practice such
computations are often impractical for the complex systems of interest to the Air Force.

Thus other methods are being developed including response surface techniques that seek
to develop a relatively simple and computationally compact relationship between the

uncertain parameter and the system response. In the present work an efficient method for

constructing response surfaces has been developed and a representative result is shown in

Figure 5. Here is a plot of the probability of occurrence versus the level of LCO response

for a given flow velocity for the Duke delta wing model. Also shown on the plot is the



nominal or mean response if there were no uncertainty in the parameter which in this case
is the thickness of the delta wing model. Results are shown from both a brute force
Monte Carlo simulation as well as from the new response surface method. Such a plot
gives the analyst or designer a measure of the uncertainty in system response due to the
uncertainty in the parameter.

Equally important, the new response surface computational method developed for
obtaining such results is several orders of magnitude faster than a Monte Carlo simulation
while providing adequate accuracy. See References 5 and 6 for more details.

ANOTHER EXAMPLE OF PARAMETER UNCERTAINTY AND PHYSICAL

MODELING UNCERTAINTY:

In very recent work on F-I 6 linear and nonlinear aeroelastic response, the sensitivity to

"* aerodynamic modeling of tip missiles (physical modeling uncertainty,
and

"* small changes in structural frequencies (parameter uncertainty)

has been shown. See Reference 7. For example, in Figure 6 the computational results for
a nominal set of structural frequencies and those for a I% change in such frequencies are
shown compared to flight test data. Clearly small uncertainties in structural frequencies
can lead to significant uncertainties in system response. A 1% change in a key structural
frequency can lead to a 10% change in the Mach number at which flutter or limit cycle
oscillations occur, for example.

SUMMARY:

The effects of uncertainties in the physical/computational model, the numerical solution,
and the parameters that are inputs to the model have all been studied. Representative
results have been shown including correlations with experiment and their significance
discussed. New methods have been developed for determining solutions to high fidelity
physical/computational models, determining their numerical accuracy and taking into
account parameter uncertainties. These new methods are much faster than previous
methods while maintaining the levels of accuracy required.
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